

General Chemistry Laboratory

Potentiometric Titration of Acid-Base

1

Last revised: 2024/05/07

Preparation

Note:

Collect the following items

Measure 2.5 mL vinegar to titrate

- One magnetic stir bar (TA distribute)
- One glass funnel
- One 25 mL buret
- One 100 mL volumetric flask
- Two 125 mL Erlenmeyer flasks (check if broken)
- One 5 mL pipet and pipet filler (shared)
- □ pH 7.00 and pH 4.00 standard buffer solution (shared)

From your personal equipment

- Two 100 mL beakers
- One wash bottle and one 1 L plastic beaker

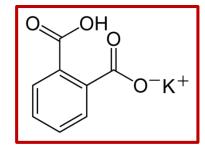
Objective and Principles

Objective:

- To prepare and to standardize secondarystandard solutions
- To determine the equivalence point and concentration of acetic acid by using the electric potential method
- To determine the dissociation constant of acetic acid, K_a

Lab techniques:

- Operate a **pH meter**
- Use of volumetric flask, and graduated pipet
- Determine the equivalence point by titration curves


Standardization of Acid or Base

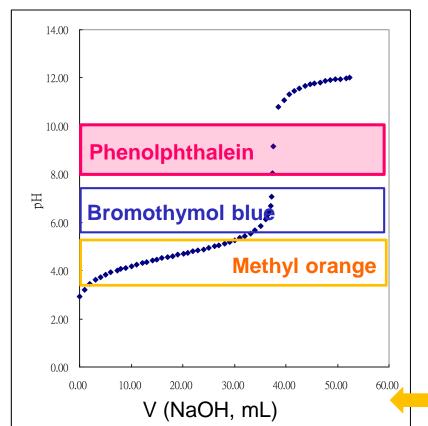
- Primary standard: substance with high purity and high molar mass
 - Common base: sodium carbonate (Na₂CO₃)
 - Common acid: potassium hydrogen phthalate (KHP)
- Secondary standard: standardized acid or base
 - Common base: sodium hydroxide (NaOH)
 - Common acid: hydrogen chloride (HCI)
- KHP is a monoprotic weak acid with structure
- The neutralization reaction of KHP with NaOH in a 1:1 stoichiometric ratio

 $HOOCC_6H_4COOK(aq) + NaOH(aq) \rightarrow$

 $C_6H_4(COO)_2^{2-}(aq) + K^+(aq) + Na^+(aq) + H_2O(I)$

$$C_{NaOH} \cdot V_{NaOH} = n_{KHP} = \frac{Mass_{KHP}}{204.22}$$

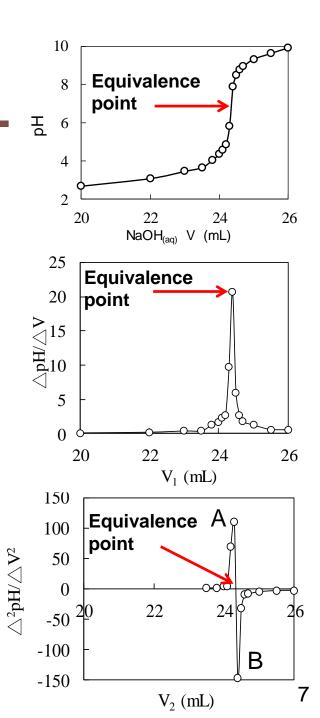
Acid-base Indicator


- Acid-base indicator: a weak organic acid or base
- Weak acid (HIn) and its conjugate base (In-) with different colors

- According to the pH range of the equivalence point, choose the appropriate indicator to match the end-point with the equivalence point
- At the equivalence point, pH of the solution:
 - \circ Strong acid/weak base titration: pH < 7
 - Weak acid/strong base titration: pH > 7
 - \circ Strong acid/strong base titration: pH = 7

Equivalence Point

- The pH of the reacting solution changes significantly near the equivalence point
- Base on the color change of the acid-base indicator or monitoring the change in pH values to determine the end-point


Indicator	Acid form	pH range	Basic form	
Methyl orange	Red	4.2~6.0	Orange	
Bromothymol blue	Yellow	6.0~7.6	Blue	
Phenol- phthalein	Colorless	8.3~10	Pink red	

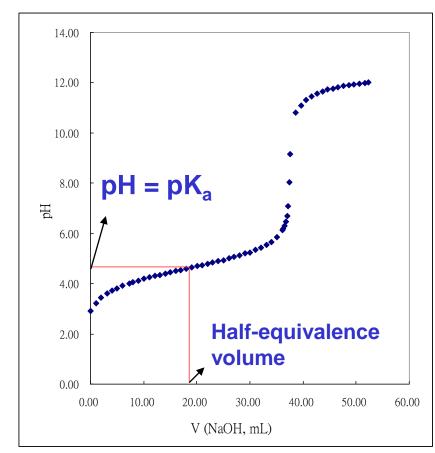
Weak acid / strong base titration curve

Equivalence Point

- 1. Acid-base titration curve The point on the curve with the maximum slope is the equivalence point
- 2. First derivative of titration curve The maximum point is the equivalence point
- 3. Second derivative of the titration curve X-intercept of line A-B is the equivalence point

Dissociation Constant of Weak Acid

- Acid-base neutralization reaction:
 HA(aq) + OH⁻(aq) → H₂O(I) + A⁻(aq)
- Dissociation of weak acid


 $HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$

 $K_a = \frac{\left[A\right]\left[H_3O^+\right]}{\left[HA\right]}$

At half-equivalence point

 $[HA] = [A^{-}]; [H_{3}O^{+}] = K_{a}$ $pH = pK_{a}$

Weak acid – strong base titration curve

Dissociation Constant of Weak Acid

For example:

Equivalence volume = 37.50 mL

• Half-equivalence volume = 18.75 mL

V = 18.00 mL, pH = 4.60

V = 19.10 mL, pH = 4.65

• pH of the half-equivalence point = 4.63

$$K_a = \frac{\left[A\right]\left[H_3O^+\right]}{\left[HA\right]}$$

 \circ pK_a = pH = 4.63, K_a = 2.3 × 10⁻⁵

Weak acid – strong base titration curve

A pH meter consists of three parts:

> pH electrode assembly

- Reference electrode (often Ag/AgCI) potential is fixed
- Indicator electrode (glass frit) potential varies with [H⁺]
- > Voltmeter: measure the potential difference (E_m) between the two electrodes
- > Thermoprobe: measure the temperature of solution

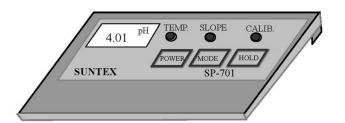
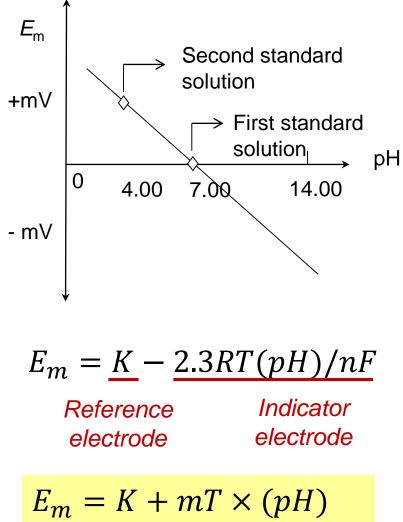
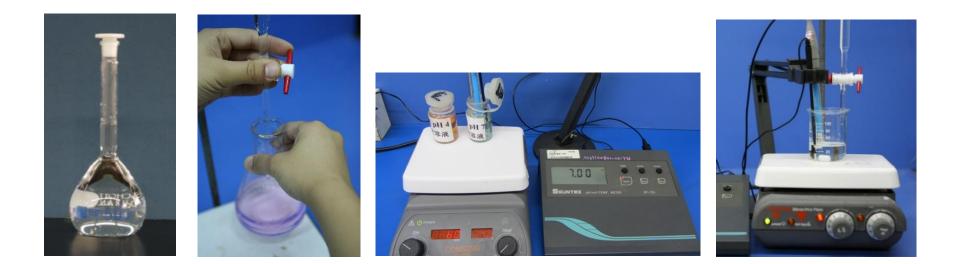



Fig. T16-1 pH meter in lab (SUNTEX SP-701)


Working Principles of pH Meter

- The pH meter needs to be **calibrated** in standard solutions (pH 7.00 and pH 4.00)
- After calibration, the measured *E*_m can be converted to pH
 - *E*_m: measured cell potential
 - K: constant, determined by the type of electrode used
 - R: gas constant
 - T: absolute temperature of the solution
 - pH: pH value of solution
 - n: number of moles of electrons transferred in the reaction
 - F: Faraday constant

Experiment Tasks

- 1. Prepare NaOH(aq)
- 2. Standardize NaOH(aq)
- 3. Calibrate pH-meter
- 4. Titrate vinegar with NaOH(aq)

Step 1: Prepare 0.1 M NaOH Solution

- Measure 10 mL of 1 M NaOH to a 100 mL volumetric flask that contains some DI water
- Dilute to 100 mL

- Stopper and invert the volumetric flask several times to mix thoroughly
- Transfer to a 100 mL beaker (label properly)
- Rinse buret twice with
 5 mL NaOH(aq)
- Fill the buret
- Read initial volume of buret (V_i) to 0.01 mL

Step 2: Standardize NaOH Solution

- Dissolve with 50 mL DI water
- 2. Add 2 d of phenolphthalein
- 3. Titrate with 0.1 M NaOH

- Measure ca. 0.2~0.22 g KHP with analytical balance
- Record accurate weight
- Place into a 125 mL Erlenmeyer flask
 - ✓ KHP dissolves slowly

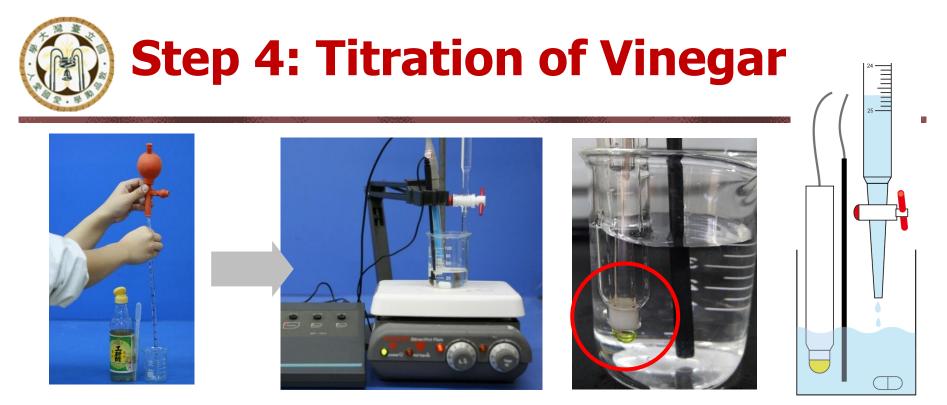
- Titrate the solution to appear pink and persist for 30 s
- Record V_i and V_f (to 0.01 mL)
- Carry out a duplicate test
- Calculate average concentration of NaOH

Step 3: Calibration of pH Meter

- Press the "POWER" button to turn on the pH meter. Let it warm up for at least 10 min
- Press the "HOLD" button to suspend pH reading
- Remove the electrode cap by rotating it
- Use a wash bottle to rinse the electrode assembly, then wipe it dry gently with a tissue

✓ Remove electrode cap and operate with care✓ Each pH electrode assembly costs NTD 3000

Step 3: Calibration of pH Meter


- Press the "MODE" button several times until "Temp" appears on the screen. <u>Check whether the temperature reading is close to RT</u>
- Press the "MODE" button again to switch to "pH" function

- Immerse both thermoprobe and pH electrode into pH 7.00 buffer solution
- Adjust Calib knob until '7.00' is shown

- Rinse the thermoprobe and pH electrode with DI water
- Switch to pH 4.00 buffer solution 16
- Adjust Slope knob until '4.00' is shown

- Transfer 2.5 mL vinegar into a 100 mL beaker
- Record the brand and concentration of vinegar
- Add 40 mL of DI water
- Add 2 d. of phenolphthalein
- Place stirring bar, the electrode, and thermoprobe in solution

- Titrate with standardized 0.1 M NaOH and record V_i , V_f , and pH value after each addition
 - At pH < 5.5: add ~ 1 mL of NaOH
 - At pH 5.5~10: add ~ 0.2 mL NaOH

17

- At pH 10~11: add ~ 1 mL NaOH
- Observe and record the change in **color** of solution during titration

Clean-Up and Check-Out

- Place the pH electrode in electrode-cap filled with 3 M KCI
- Switch off the pH meter (keep the power cord plugged in)
- Salt solutions resulted from acid-base neutralization can be disposed into the sink
- Return the magnetic stir bar to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- Groups on duty shall stay and help clean up the lab
- This is a Full Report experiment:
 - Have the lab notes and results checked by the TA, and hand in the report next week.

Data Analysis of Report

In Excel

- 1. Average standardized concentration of NaOH
- 2. Experimental data
- 3. 3 plots
- 4. 3 equivalence points
- 5. The molar concentration of acetic acid in vinegar (C_{HOAc})
- 6. Mass percent concentration
 - Compare with labels (assume density is same as water)

For example:

 $C_{\rm M} = 0.737~M$

7. $K_{\rm a}$ of acetic acid

$$\frac{\frac{0.737 \, mol}{L} \times 60.0 \, g}{1000 \, mL} \times 100\% = 4.4\%}{1000 \, mL}$$

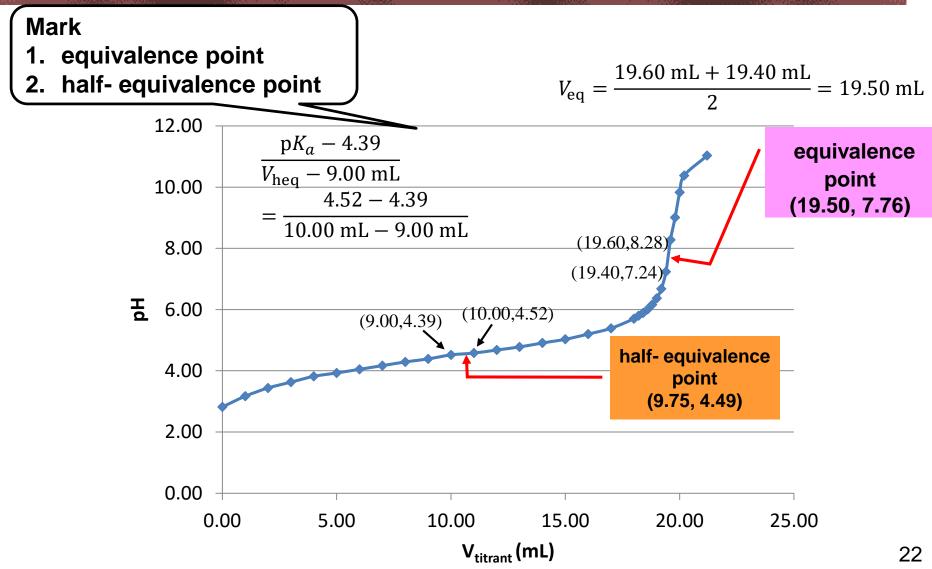
 $C_{NaOH} \cdot V_{NaOH} = \frac{Mass_{KHP}}{204.22}$

 $C_{NaOH}V_{NaOH} = C_{HOAc}V_2$

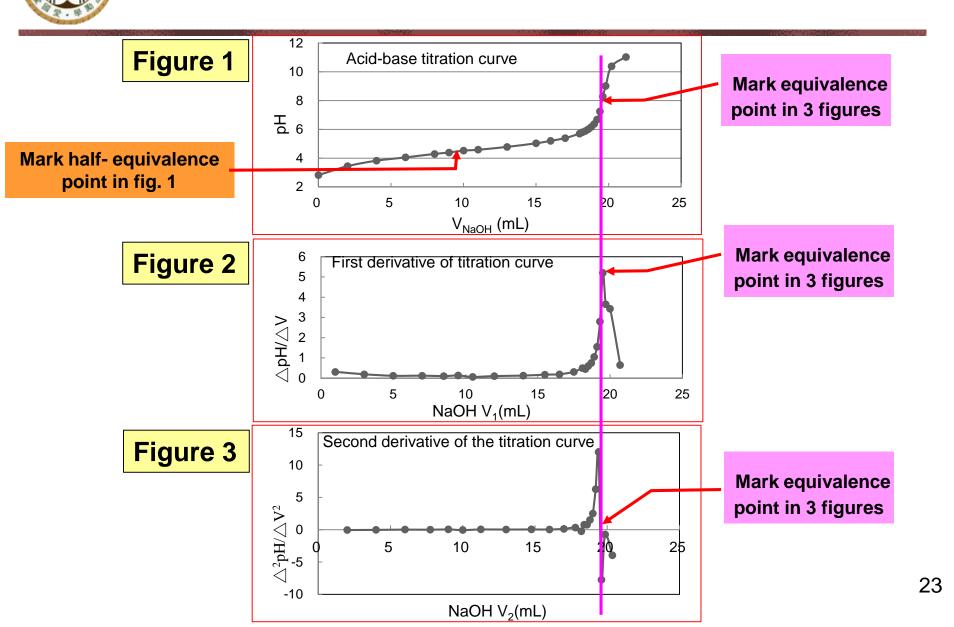
• Compare with theoretical value

Example of Data Sheet

						الم]
Set data to two decimal	V _{ead} (mL)	V _{titrant} (mL)	рН	V _{ead} (mL)	V _{titrant} (mL)	рН	_
places	0.35	0.00	2.94	16.35	16.00	4.95	_
places	1.35	1.00	3.34	17.35	17.00	5.05	
	2.35	2.00	3.60	18.35	18.00	5.17	
V _{titrant} = V _{read} - V _i	3.35	3.00	3.78	19.35	19.00	5.30	
	4.35	4.00	3.92	20.35	20.00	5.47	
0.35 - 0.35 = 0.00	5.35	5.00	4.03	20.55	20.20	5.51	
1.35 - 0.35 = 1.00	6.35	6.00	4.13	20.75	20.40	5.56	
	7.35	7.00	4.22	20.95	20.60	5.60	
	8.35	8.00	4.31	21.15	20.80	5.66	
	9.35	9.00	4.39	21.35	21.00	5.72	
	10.35	10.00	4.47	21.55	21.20	5.79	
	11.35	11.00	4.54	21.75	21.40	5.85	
	12.35	12.00	4.62	21.95	21.60	5.93	
Mark half- equivalence	13.35	13.00	4.70	22.15	21.80	6.04	
point	14.35	14.00	4.78	22.35	22.00	6.17	
point	15.35	15.00	4.86	22.55	22.20	6.33	
					22.40	6.57	
				22.95	22.60	6.86	
				23.15	22.80	8.35	
	Mark equivalence			23.35	23.00	9.20	
			23.55	23.20	9.80		
point				23.75	23.40	10.21	20
				24.75	24.40	11.09	20



Example of Data Analysis


	V ₁	$V_1 = \frac{0.00 + 1.00}{2} = 0.50$			$V_2 = \frac{0.50 + 1.50}{2} = 1.00$			
$\Delta p H/\Delta V = \frac{3.34 - 2.94}{1.00 - 0.00} = 0.40 \qquad \Delta (\Delta p H/\Delta V)/\Delta V_1 = \frac{0.26 - 0.40}{1.50 - 0.50} = -0.14$								
	Titratio	on curve	First de	First derivative		Second derivative		
	V _{NaOH}	рН	V ₁	ΔρΗ/ΔV	V ₂	$\Delta(\Delta pH/\Delta V)/\Delta V_1$		
	0.00	2.94	0.50	0.40	1.00	-0.14		
	1.00	3.34	1.50	0.26	2.00	-0.08		
	2.00	3.60	2.50	0.18	3.00	-0.04		
	22.40	6.57	22.50	1.45	22.60	30.00		
Mark equivalence	22.60	6.86	22.70	7.45	22.80	-16.00		
point	22.80	8.35	22.90	4.25	23.00	-6.25		
	23.00	9.20	23.10	3.00	23.20	-4.75		

Example of Titration Curve

Example of Figures

